Decreased expression of both the 1- and 2-subunits of the Na-K-ATPase reduces maximal alveolar epithelial fluid clearance
نویسندگان
چکیده
Looney, Mark R., Claudio Sartori, Santanu Chakraborty, Paul F. James, Jerry B. Lingrel, and Michael A. Matthay. Decreased expression of both the 1and 2-subunits of the Na-K-ATPase reduces maximal alveolar epithelial fluid clearance. Am J Physiol Lung Cell Mol Physiol 289: L104–L110, 2005. First published March 18, 2005; doi:10.1152/ajplung.00464.2004.—Impaired epithelial sodium channel function predisposes to delayed resorption of pulmonary edema and more severe experimental lung injury, whereas even a small fraction of the normal Na-K-ATPase activity is thought to be sufficient to maintain normal ion transport. However, direct proof is lacking. Therefore, we studied baseline and cAMP stimulated alveolar fluid clearance (AFC) in mice with a 50% decrease in lung protein expression of the 1and/or 2-subunit of the Na-K-ATPase. There was no difference in basal and stimulated AFC in 1 / or 2 /
منابع مشابه
Leukotriene D4 activates alveolar epithelial Na,K-ATPase and increases alveolar fluid clearance.
Cysteinyl leukotrienes are increased during acute lung injury in animals and humans. In this study, we determined the effect of leukotriene D4 (LTD4) on the function of Na,K-ATPase in alveolar epithelial cells and on alveolar fluid clearance in rat lungs. LTD4 (1 x 10(-7) M) increased Na,K-ATPase activity at 1 and 5 minutes by 14% (p < 0.05) and 31% (p < 0.001), respectively, in A549 alveolar e...
متن کاملHypoxia reversibly inhibits epithelial sodium transport but does not inhibit lung ENaC or Na-K-ATPase expression.
Hypoxia reduces alveolar liquid clearance and the nasal potential difference, a marker of airway epithelial sodium transport. The mechanisms underlying this impaired epithelial sodium transport in vivo remain uncertain. We hypothesized that epithelial sodium transport impaired by hypoxia would recover quickly with reoxygenation and that hypoxia decreases the expression of lung epithelial sodium...
متن کاملDexamethasone prevents transport inhibition by hypoxia in rat lung and alveolar epithelial cells by stimulating activity and expression of Na+-K+-ATPase and epithelial Na+ channels.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were ...
متن کاملNa+-K+-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF.
We evaluated the effects of keratinocyte growth factor (KGF) on alveolar epithelial cell (AEC) active ion transport and on rat epithelial Na channel (rENaC) subunit and Na+-K+-adenosinetriphosphatase (ATPase) subunit isoform expression using monolayers of AEC grown in primary culture. Rat alveolar type II cells were plated on polycarbonate filters in serum-free medium, and KGF (10 ng/ml) was ad...
متن کاملOverexpression of the Na-K-ATPase alpha2-subunit improves lung liquid clearance during ventilation-induced lung injury.
Mechanical ventilation with high tidal volumes (HV(T)) impairs lung liquid clearance (LLC) and downregulates alveolar epithelial Na-K-ATPase. We have previously reported that the Na-K-ATPase alpha(2)-subunit contributes to LLC in normal rat lungs. Here we tested whether overexpression of Na-K-ATPase alpha(2)-subunit in the alveolar epithelium would increase clearance in a HV(T) model of lung in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005